
JOURNAL OF COMPUTATIONAL PHYSICS 20, 140-159 (1976) 

An Assessment of the Quality of Selected Finite Difference Schemes 
for Time Dependent Compressible Flows 

K. SRINIVAS, J. GURURAJA, AND K. KRISHNA PRASAD 

Department of Mechanical Engineering, 
Indian Institute of Science, Bangalore 560012, India 

Received February 19, 1975 

An assessment has been made of the character of the results near discontinuities 
yielded by selected numerical schemes of first-order (Rusanov and Van Leer schemes), 
second-order (Richtmyer and MacCormack schemes) and third-order (Rusanov scheme) 
and their capabilities are compared. The effectiveness of the Shuman Switch for use in 
higher order schemes has also been investigated. The Van Leer scheme is found to be 
preferable to the Rusanov scheme as it has a higher resolving power. The MacCormack 
scheme appears to behave better than the Richtmyer scheme in all aspects of shock 
handling. The Shuman switch is found to eliminate overshoots, undershoots and 
oscillations and fight nonlinear instabilities only by smearing the profiles. All schemes 
except the third order scheme produce artificial density profile near the wall when a 
shock wave is reflected from the wall. 

A number of finite-difference schemes are available for solving unsteady, 
inviscid, compressible flow problems. From time to time several attempts have 
been made to rate the various schemes according to their merit. A common 
evaluating procedure is to subject the schemes to a set of well-chosen test problems 
(for which, preferably, exact solutions are known). The results of four such 
attempts [l-4] are summarized in Table I. An obvious conclusion that emerges 
from an examination of the table is that there is no agreement among the previous 
investigators regarding the choice of a method. However, certain broad deductions 
could be made. A higher order scheme does not necessarily handle a discontinuity 
adequately except for perhaps the sharpness of the contact discontinuity profile. 
The best first-order methods are superior to second- and third-order methods in 
shock handling. However, a third-order method gives least error in the description 
of a rarefaction wave. In this paper, we shall concentrate on some schemes and 
properties of schemes that were not fully considered in the earlier investigations. 
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SELECTED FINITE DIFFERENCE SCHEMES 141 

Specifically, we wish to address ourselves to the following questions: 

(1) How does Van Leer’s [5] first-order scheme (diffusion proportional to 
square of local Courant number) compare with Rusanov’s [6] first-order scheme 
(diffusion proportional to local Courant number) ? 

(2) How does the noncentered MacCormack [7, 81 scheme compare with 
the Richtmyer [9] scheme? 

(3) What are the effects of the Shuman Switch [IO] on the various schemes? 
(4) How do the various schemes behave near the wall boundary in a shock 

reflection problem? 
(5) How well do the higher order schemes represent a standing shock? 

The answers to these questions along with the conclusions available in the 
literature (Table I) are expected to provide more insight into the behavior of 
schemes and assist in the choice of a scheme for a new problem. 

GOVERNING EQUATIONS, NUMERICAL SCHEMES, AND TEST PROBLEMS 

The governing equations for one-dimensional unsteady, inviscid, compressible 
flows in vector form are given by 

W, + Fx = 0 

where 

with p = density, u = velocity, p = pressure, e = total energy = internal 
energy + $u2 = (l/(y - l))(P/p) + (l/2) pu2, and y = ratio of specific heats. 
The subscripts t and X refer to partial derivatives with respect to time and space 
coordinates respectively. 

The present study is restricted to five schemes: (1) First-order Rusanov [6] 
scheme, (2) First-order Van Leer [6] scheme, (3) second-order Richtmyer [9] 
scheme, (4) second-order MacCormack [7, 81 scheme and (5) third-order scheme 
formulated by Rusanov [I l] and Burstein and Mirin [12]. In addition it covers 
the behavior of the Shuman Switch [IO] when it is incorporated in higher order 
schemes. The Shuman Switch employs the idea of reducing the order of accuracy 
to that of first-order scheme near the shocks since the first-order schemes handle 
shocks satisfactorily without oscillations. In particular, the information on the 
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behaviour of the Shuman Switch and the Van Leer scheme is meagre and therefore 
they have been considered here in detail. 

Table II summarises the different finite-difference formulations considered in 
this study along with their stability criteria and orders of accuracy. 

Four test problems have been considered in the investigation. They have all 
been chosen to be one-dimensional not only because of the availability of exact 
solutions but also because they have been subjected extensively to numerical 
testing. It is realized that the conclusions from one-dimensional study cannot 
be easily extended to multidimensional problems. However, a scheme which does 
not perform adequately for one-dimensional problems is unlikely to prove useful 
for multidimensional problems. The physical situations studied here are described 
below. 

(i) A shock wave propagating along a uniform duct. This problem helps 
to establish the shock handling capabilities of different schemes. 

(ii) Shock reflection from the closed end of a duct. This illustrates the 
behavior of different schemes near boundaries. 

(iii) A conventional shock tube flow. The problem provides scope to examine 
the representation of rarefaction waves and contact discontinuities. 

(iv) Example of a standing shock. This problem provides the scope for 
testing Shuman Switch regarding its capability to fight nonlinear instabilities 
associated with the problem. 

For purposes of comparison with earlier investigations, a shock Mach number 
of 3.0 for the propagating shock problem (corresponding to the work of Emery [2]) 
and a diaphragm pressure ratio of 6.18 (corresponding to the work of Burstein 
and Mirin [12]) have been employed. For the standing shock problem a pressure 
ratio of 11.0 (the value employed by Van Leer [13J) is used. 

The results presented in the next section correspond to 100 time steps for the 
propagating and reflected shock problems and to 120 time steps for the shock 
tube problem. Significant changes in the profiles ceased to occur much before 
these time steps. All of the computations reported in this paper have been carried 
out on an IBM 360/44 system at the Indian Institute of Science Computer Center. 

RESULTS AND DISCUSSION 

A large amount of computational results have been obtained as part of the 
investigation. We will discuss here only those results that highlight features of the 
different schemes not reported in earlier investigations. The results have been 
grouped according to the test problems considered. Figures 1-14 present a qualita- 
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TABLE 111~ 

Comparison of Results Obtained for Different Schemes: Contact Dicontinuity 

Sl. Numerical scheme with 
No. parameter description 

I. Rusanov (first-Order) 

2. Van Leer (first-order) 

3. Richtmyer (Second-Order) 
(Basic Scheme) 
Richtmyer (Second-Order) 
(with Shuman Switch) 

Fig. 
No. 

w = 1.0 0 = 0.7 10 
w = 1.0 0 = 0.7 IO 

0 = 1.0 

w = 1.0 0 = 0.1 IO 
0 = 1.0 

D = 0.7 I1 
0 = 1.0 

D = 1.0 ,y = 1.0 
,y = 2.0 

Undershoot Smearing 
____~ ~~~. .__ 

- 38 
- 38 
- 45 

- 35 
- 45 

70.5 IO 
41.06 IO 
41.2 15 
41.2 20 

4. MacCormack (Second-Order) unstable 

5. Rusanov (third-Order) w = 2124 0 = 0.7 12 8.82 IO 
Rusanov (third-Order) 
(with Shuman Switch) w = 2124 ,y = 1.0 12 8.82 15 

(I = 0.7 x = 2.0 12 8.82 20 

Smearing is defined in terms of the number of mesh widths over which a discontinuity spreads. 
In case of smooth profiles all points where the numerical value differs from the theoretical value 
by more than 1 per-cent are considered to add to the width of discontinuity. Wherever an overshoot 
or an undershoot is present, the point at which the value is maximum or minimum is considered 
as the head or the tail respectively of the discontinuity. 

Similar considerations hold good when fixing the number of meshes from the wall to the point 
at which the density value is equal to the theoretical value. 

Overshoot is expressed as a percentage of maximum pressure (density in the case of contact 
discontinuity). 

Undershoot is expressed as a percentage of minimum pressure (density in the case of contact 
discontinuity). Integrated error = (l/S) ji 1 Pa - PTA j dx where Pa = the actual pressure, 
PTh = theoretical pressure. 6 = width of the discontinuity. For purposes of numerical inte- 
gration all the points in the region were considered since the contribution to the error from points 
outside the width 6, is negligible. The integrated error for the different schemes is expressed as a 
ratio of the error to that for the first order Rusanov Scheme. Time of computation for the different 
schemes is also expressed as a ratio of time required for 20 time steps to that required by the 
first-order Rusanov scheme. 

tive picture of the capability of different schemes in describing the main features 
of the test problems. Quantitative results like overshoot, undershoot, shock 
smearing, accuracy, and time of computation have been collected in Table III 
for propagating shock, reflected shock, and contact discontinuity. Reference to 
Table 111, which also includes values of the integrated error, indicates that the 

581/20/2-3 
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integrated error across a discontinuity is dependent on the value of u, the flow 
property and the problem considered. The ranking of schemes based on the 
propagating shock (considered by Taylor et al. [3]) and that based on the reflected 
shock (present calculations) are not the same. Similarly the ranking based on 
density (Taylor et al. [3]) and that based on pressure (present calculations) are 
not the same. Consequently the conclusions based entirely on the values of 
integrated errors for various schemes could be misleading. However, some indica- 
tion can be obtained as regards the merits in employing the first-order Van Leer 
scheme and the demerits in employing the Shuman Switch. 

It also appears that the ranking of schemes based on any particular aspect 
would again be misleading. There does not appear to be any other particular 
criterion which could be universal. Hence, all aspects of scheme behavior are 
considered when the comparisons are made. 

(i) Rusanov and Van Leer Schemes 

Figures 1 and 4 indicate that the Van Leer scheme yields sharper shocks (both 
the propagating and the reflected) compared to the first order Rusanov scheme 
for the same set of parameters. An overshoot results for values of 0 greater than 
0.7. The propagating shock profile is acceptable upto u = 0.8. In the case of the 
reflected shock small oscillations exist. The profile is somewhat more smeared 
at the tail. The prediction of density at the wall is also improved (Table IIIb). 

12 

10 

- 

a 
a" 5 

0 
-;-:;rll_ 

zo.7 o-:O.E co.9 ~095 cl.0 

(a) w=1.0 

FIG. 1. Pressure profiles for the propagating shock as given by the first-order schemes: 
(a) the Rusanov scheme, (b) the VanLeer scheme. 
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- r-10Meshwdth 

(b) 
(r= 1.0 

ICI-- 
(c) (6 (e) 

5=10,m=20 ~=l.O,X=lO u=lo,x~20 
(c) 

U=lO,rn=20 
(e) 

u=lo,x~20 

FIG. 2. Pressure profiles for the propagating shock as given by the second-order Richtmyer 
scheme: (a) basic form, (b) with the Shuman Switch, (c) with the Shuman Switch in quadratic 
form, (d) with the Shuman Switch in exponential form and x = 1.0, (e) with the Shuman Switch 
in exponential form and x = 2.0. 

12- 

Wra0.7, (b)w=20124,o.0.7 

FIG. 3. Pressure profiles for the propagating shock as given by the third-order Rusanov 
scheme: (a) Basic form, (b) with Shuman Switch. 

Regarding the shock tube flow it is found that the shock is rendered sharper but 
with an overshoot. The contact discontinuity behaviour is slightly improved. 

(ii) MacCormack and Richtmyer Schemes 

Studies by Taylor et al. [3] do not give explicit information about the 
MacCormack scheme. Also the form of the MacCormack scheme considered is 
different from that considered here. The present results show that the MacCormack 
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a=1.0 Ax.5 az0.90 c-o.70 

20 

10 
(b) @=I.0 

FIG. 4. Pressure profiles for the reflected shock as given by the first-order schemes: (a) the 
Rusanov scheme, (b) the Van Leer scheme. 

scheme behaves better than the Richtmyer scheme regarding all the aspects of the 
propagating and the reflected shocks. But the major disadvantage is that the 
MacCormack scheme is unstable for the shock tube problem. Regarding the 
calculation of the standing shock the Richtmyer scheme was found to be unstable. 
The profile obtained by the MacCormack scheme, exhibiting a mild instability, 
was not acceptable. 

(iii) The erects of the Shuman Switch 

Figures 2, 3, 5, 6, and 7 show that the Shuman Switch is quite effective in 
eliminating the oscillations, overshoots and undershoots. As is expected this is 
obtained at the cost of smearing of the profiles. In general, a value of x = 1.0 
for both the propagating and the reflected shocks seems adequate. Some oscilla- 
tions do remain for the reflected shock. Employing the value of x = 2.0 produces 
a cascadelike structure making the profile unacceptable. To overcome excess 
smearing, improved forms, namely, a value of m = 2.0 and the exponential form 
with m = I,2 were tried (see Table II). The effect of these improvements is strongly 
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FIG. 5. Pressure profiles for the reflected shock as given by the second-order Richtmyer 
scheme with and without the Shuman Switch. 

with Sherman switch with Sherman switch 

FIG. 6. Pressure profiles for the reflected shock as given by the second-order MacCormack 
scheme with and without the Shuman Switch. 

felt for x = 2.0 where the profile is rendered sharper especially at the upstream 
of the propagating shock. The exponential form with x = 2.0, m = 2.0 again 
gives rise to a cascadelike structure for both the propagating and the reflected 
shocks. The above conclusions are true even for the shock in the shock tube flow 
(Figs. 11-14). The weak shock here is smeared to about 10 mesh widths. The 
oscillations near the contact discontinuity are not eliminated. An elimination of 
these is possible only with certain disadvantages like smearing and presence of a 
large undershoot (Fig. 12). Figure 13 shows that the various improved forms of 
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FIG. 7. Pressure profiles for the reflected shock as given by the third-order Rusanov scheme: 
(a) basic form D = 0.7, (b) with the Shuman Switch in basic form, w = 2/24, CJ = 0.7, (c) with 
the Shuman Switch in exponential form, w = 2124, D = 0.7. 

10.2 

10.0 
i 

FIG. 8. Density profiles near the wall (enlarged) as given by the various schemes for the shock 
reflection problem: (a) - - - . --- * first-order Rusanov scheme, w = 1.0, __ . . - . . 
first-order Van Leer scheme, w = 1.0, --.-.- second-order Richtmyer scheme, -- -- 
second-order MacCormack scheme, - third-order Rusanov scheme; (b) -- - Richtmyer 
scheme without the Shun-ran Switch. - Richtmyer scheme with the Shuman Switch, x = 1.0, 
-.-. Richtmyer scheme with the Shuman Switch, x = 2.0. 

the switch do not appear to offer any significant improvement in the behavior 
of schemes. The Shuman Switch was employed in the Richtmyer scheme for the 
example of the standing shock. The instability was overcome and stable results 
were obtained for x = 1.0 and x = 2.0. Large smearing even for x = 1.0, is 
evident from Fig. 9. 
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20 30 40 50 60 
Distance x 

FIG. 9. Pressure profiles for the standing shock as given by the Richtmyer scheme with the 
Shuman Switch (u = 0.7). 

FIG. 10. Density and pressure profiles for the shock tube flow as given by the first-order 
schemes. o = 0.7. - the Rusanov scheme, --- the Van Leer scheme. 

(iv) Boundary Errors for D@erent Schemes 

It is noticed that (Fig. 8) with the exception of the third-order scheme and the 
MacCormack scheme, all other schemes considered predict a lower value of 
density at the wall. The MacCormack scheme predicts a higher value. The manner 
in which the density profile joins the theoretical value behind the reflected shock 
is seen to be a function of the order of the scheme. The prediction of a lower value 
of density at the wall could be accounted for by following the arguments advanced 
by Fox [15]. When the shock interacts with the wall and the reflected shock is 
formed, there is an over production of entropy and subsequent heating at the wall. 
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FIG. 11. Density and pressure profiles for the shock tube flow as given by the second-order 
Richtmyer scheme 0 = 0.7, - Basic scheme, -.--.- with the Shuman Switch x = 1.0, 
--- with the Switch, x = 2.0. 

FIG. 12. Density profile as given by the Richtmyer scheme with the Shuman Switch (x = 2.0) 
oscillations near contact discontinuity eliminated. 

This results in the lowering of the density value and thus large error in density 
value accumulates at the wall. The first-order schemes tend to be diffusive even 
in presence of a zero-velocity field (which exists between the wall and the reflected 
shock) and hence the above error gets diffused over a number of mesh widths in 



SELECTED FINITE DIFFERENCE SCHEMES 157 

lcl0 Meshwidth 

FIG. 13. Enlarged density profiles, between contact discontinuity and shock, as given by the 
Richtmyer scheme with the various forms of Shuman Switch (x = 2.0), - without the Shuman 
Switch, -e-.- switch in the basic form, m = I .O - - - - - switch with m = 2.0, - - - - 
switch in the exponential form, m = 2.0. 

FIG. 14. Density and pressure profiles for the shock tube flow as given by the third-order 
Rusanov scheme, w = 2.0/2.4, D = 0.7, - basic scheme, -.-.- with the Shuman Switch, 
x = 1.0, - - - - with the Shuman Switch, x = 2.0. 

the course of time. Similar reasoning holds good when the Shuman Switch is 
employed with the higher order schemes, where the order of accuracy is lowered 
to one wherever the switch is “ON.” By the suitable choice of a shock-sensing 
property it is possible to avoid the artificial smearing at the wall. But in this case 
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one has to accept the artificial oscillatory profile given by the basic second-order 
scheme. 

(v) Behavior of Schemes for the Standing Shock 

The first- and the third-order methods, as expected, gave stable results for the 
standing shock problem. The smearing, overshoot and other features of the 
profiles were similar to those observed for the example of the propagating shock. 
The Richtmyer scheme was found to be unstable. The MacCormack scheme 
exhibited a mild instability allowing the computations to proceed. But the profile 
was unacceptable. This nonlinear instability can be overcome by employing the 
Shuman Switch. This has been demonstrated for the Richtmyer scheme in Fig. 9. 
Further discussion regarding this may be found in Section iii. 

CONCLUDING REMARKS 

With reference to the questions which were posed earlier the following conclu- 
sions can be drawn. 

1. Compared to the Rusanov scheme, the Van Leer scheme does give 
sharper shock profiles which also are smooth for values of u around 0.7. The 
improvement regarding other discontinuities is marginal. 

2. The MacCormack scheme is seen to behave better than the Richtmyer 
scheme in all aspects of shock handling. 

3. The Shuman Switch is effective in overcoming oscillations and instabilities 
but considerably smears the shock and the weak shocks are smeared to an intoler- 
able extent. 

4. The first- and the second-order methods both give rise to artificial heating 
at the wall and hence artificial density profile near the wall in the case of shock- 
wave reflection. 

5. The nonlinear instability associated with the standing shock can be 
overcome by the use of the Shuman Switch provided one can accept the largely 
smeared shock profile. 

When we consider the results of the present work together with those of earlier 
investigations (Table I), it is observed that no single scheme performs best in 
every aspect considered. The recommendation by Taylor et al. [3] of Godunov’s 
scheme [14] (not tested here) is, of course, unaffected. The Godunov scheme, 
however, requires considerable programming effort and computer time, while 
the simplified version given by Van Leer [13] again requires extra viscosity terms 
to overcome nonlinear instabilities. For those who want a first-order scheme as 
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simple as Rusanov’s, but with a somewhat higher resolving power, the Van Leer 
scheme with quadratic diffusion coefficients may be an alternate choice. The 
reduction in diffusion, however, is paid with an increase in overshoot. 
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