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An assessment has been made of the character of the results near discontinuities
yielded by selected numerical schemes of first-order (Rusanov and Van Leer schemes),
second-order (Richtmyer and MacCormack schemes) and third-order (Rusanov scheme)
and their capabilities are compared. The effectiveness of the Shuman Switch for use in
higher order schemes has also been investigated. The Van Leer scheme is found to be
preferable to the Rusanov scheme as it has a higher resolving power. The MacCormack
scheme appears to behave better than the Richtmyer scheme in all aspects of shock
handling. The Shuman switch is found to eliminate overshoots, undershoots and
oscillations and fight nonlinear instabilities only by smearing the profiles. All schemes
except the third order scheme produce artificial density profile near the wall when a
shock wave is reflected from the wall.

INTRODUCTION

A number of finite-difference schemes are available for solving unsteady,
inviscid, compressible flow problems. From time to time several attempts have
been made to rate the various schemes according to their merit. A common
evaluating procedure is to subject the schemes to a set of well-chosen test problems
(for which, preferably, exact solutions are known). The results of four such
attempts [1-4] are summarized in Table I. An obvious conclusion that emerges
from an examination of the table is that there is no agreement among the previous
investigators regarding the choice of a method. However, certain broad deductions
could be made. A higher order scheme does not necessarily handle a discontinuity
adequately except for perhaps the sharpness of the contact discontinuity profile.
The best first-order methods are superior to second- and third-order methods in
shock handling. However, a third-order method gives least error in the description
of a rarefaction wave. In this paper, we shall concentrate on some schemes and
properties of schemes that were not fully considered in the earlier investigations.
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Specifically, we wish to address ourselves to the following questions:

(1) How does Van Leer’s [5] first-order scheme (diffusion proportional to
square of local Courant number) compare with Rusanov’s [6] first-order scheme
(diffusion proportional to local Courant number)?

(2) How does the noncentered MacCormack [7, 8] scheme compare with
the Richtmyer [9] scheme?

(3) What are the effects of the Shuman Switch [10] on the various schemes?

(4) How do the various schemes behave near the wall boundary in a shock
reflection problem?

(5) How well do the higher order schemes represent a standing shock ?

The answers to these questions along with the conclusions available in the
literature (Table I) are expected to provide more insight into the behavior of
schemes and assist in the choice of a scheme for a new problem.

GOVERNING EQUATIONS, NUMERICAL SCHEMES, AND TEST PROBLEMS

The governing equations for one-dimensional unsteady, inviscid, compressible
flows in vector form are given by

Wt+FX:0

P pu
W= t{pul, F=|p- pu?
e (e + pu

with p = density, u = velocity, p = pressure, ¢ = total energy = internal
energy + $pu? = (1/(y — D) P/p) + (1/2) pu?, and y = ratio of specific heats.
The subscripts 7 and X refer to partial derivatives with respect to time and space
coordinates respectively.

The present study is restricted to five schemes: (1) First-order Rusanov [6]
scheme, (2) First-order Van Leer [6] scheme, (3) second-order Richtmyer [9]
scheme, (4) second-order MacCormack [7, 8] scheme and (5) third-order scheme
formulated by Rusanov [11] and Burstein and Mirin [12]. In addition it covers
the behavior of the Shuman Switch [10] when it is incorporated in higher order
schemes. The Shuman Switch employs the idea of reducing the order of accuracy
to that of first-order scheme near the shocks since the first-order schemes handle
shocks satisfactorily without oscillations. In particular, the information on the

where
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behaviour of the Shuman Switch and the Van Leer scheme is meagre and therefore
they have been considered here in detail.

Table II summarises the different finite-difference formulations considered in
this study along with their stability criteria and orders of accuracy.

Four test problems have been considered in the investigation. They have all
been chosen to be one-dimensional not only because of the availability of exact
solutions but also because they have been subjected extensively to numerical
testing. It is realized that the conclusions from one-dimensional study cannot
be easily extended to multidimensional problems. However, a scheme which does
not perform adequately for one-dimensional problems is unlikely to prove useful
for multidimensional problems. The physical situations studied here are described
below.

(i) A shock wave propagating along a uniform duct. This problem helps
to establish the shock handling capabilities of different schemes.

(i) Shock reflection from the closed end of a duct. This illustrates the
behavior of different schemes near boundaries.

(iii) A conventional shock tube flow. The problem provides scope to examine
the representation of rarefaction waves and contact discontinuities.

(iv) Example of a standing shock. This problem provides the scope for
testing Shuman Switch regarding its capability to fight nonlinear instabilities
associated with the problem.

For purposes of comparison with earlier investigations, a shock Mach number
of 3.0 for the propagating shock problem (corresponding to the work of Emery [2])
and a diaphragm pressure ratio of 6.18 (corresponding to the work of Burstein
and Mirin [12]) have been employed. For the standing shock problem a pressure
ratio of 11.0 (the value employed by Van Leer [13]) is used.

The results presented in the next section correspond to 100 time steps for the
propagating and reflected shock problems and to 120 time steps for the shock
tube problem. Significant changes in the profiles ceased to occur much before
these time steps. All of the computations reported in this paper have been carried
out on an IBM 360/44 system at the Indian Institute of Science Computer Center.

RESULTS AND DISCUSSION

A large amount of computational results have been obtained as part of the
investigation. We will discuss here only those results that highlight features of the
different schemes not reported in earlier investigations. The results have been
grouped according to the test problems considered. Figures 1-14 present a qualita-



147

SELECTED FINITE DIFFERENCE SCHEMES

0T LT 6
'l 9
Y L9°0 £
0l 1071 14
SLO 14
Wy 6
I (324 9
01 L1 €
760 14
0’1 L6°1 £
90 14
0l 0l €
0l L
uonw) J01ID SIIpIM
-ndwos pa1 ysowl
Joawiy -e1gaug Jo "'ON
:uueowg

— Lo € 0T=X (YoNMmg uBWINGS ylIm)

0T o€ € or =X

001 8T'S € Lo=2° vzl = @ (19p1Q-pay3) Aouesny ¢

i - O.M = 0

- 66 Lo=2o (I9PI0-PUOIS) MORWIODIEN b

- £1°0 [4 0r=2% (UoNMS TrWINYS YjIMm)

— ' z 01 =X 0= 2o (39pIQ-puodas) JAwiyory

- [ 4! 4 0l =2 (o1seqg)

- 081 4 Lo=o (19pIO-pU023s) JoAWIYINY ‘¢

- 0l 1 0l =2 (19p1Q-181L)

- L0 [ Lo=2o 0l = PITUBA T

- 6l ! 0T =09

— — 1 Lo=2o 0l =m™ (19p1Q-151Yy) Aouesny |
% 1w004ys 9, 100Uys  ‘ON uondirosap Jajowered ‘ou
Jopun) -I0AQ B YA SWAYDS [BOLIdWNN ‘[ S

yooys Sunededold :SAWAYOS JUSIAYI( 0] Pauie}qQ synsayY Jo uosuedwo)

BIIT 471dV.L



SRINIVAS, GURURAJA AND PRASAD

148

- — vL £l - - 8L 0T=X Lo=0» (Yonmg uewnyg yim)
- - £6°0 8 o'l [ 8L 01 =X $z=m (I9pIQ-pIIYY) AoueSNY
8 L10+ S0 S 0’01 6t 8L Lo=2o pgc=m (19p1Q-p1ry) AouesnNy g
8 £+ 90 € - 69°T1 8‘9 ol =2
asry dog STT+ 9L'0 £ - zel 89 Lg=2o (19pIQ-pu0ds) JORULODOIEW ¢
11 LLO9— 'l 6 - 8'I 8°S 0z =X (yoNms wewnygg yjm)
8 8'S— 8L0 9 - 96'C 8s 0I=% or=0» (I9pIO-puodag) J2AUNYOY
sty dealg wr— 650 ¢ - eI 8‘s 0l =02
asry deaig 60'¢— £€8°0 £ - 8°0¢ 8's Lg=2° (19p1Q-pu0d3s) AUNYILY €
¢l Imr— vL'0 8 - €T 8y oL =20
el 99— £8°0 6 - 0T 8p Lo=2 0l=m (19pI0-IS1Y) 129 UBA T
114 SL'1— o't 01 - — 8y 0l =2
0T €CT— 0’1 €l - - 4 Lo=o 0QOI=m (J9p10-181Y) AouBSY ‘|
Ajsuop fIem oy 1013 Uipm % % *ON uondizossp 1sjdtuesed ‘ON
*103Y3 0} e "xdap popeis ysaw jooys J00ys 31q YIIM SWIAYDS [BOLDWAN ‘IS
frem o2 Ansuag % -a)ug JO 'ON -Iapuf}  -IdAQ
wody saysawu Sunreowrg
Jo 'ON

JO0YS PIodPSY (SSWISYOS JUAIAPI( JOY PauIeIqO SINsaY Jo uosiredwo)

qIII HT19V.L



SELECTED FINITE DIFFERENCE SCHEMES 149

TABLE Hlc

Comparison of Results Obtained for Different Schemes: Contact Dicontinuity

S1. Numerical scheme with Fig.
No. parameter description No. Undershoot Smearing
1. Rusanov (first-Order) w = 1.0 o =07 10 — 38
w=1.0 o =07 10 — 38
o=10 — 45
2. Van Leer (first-Order) w = 1.0 o = 0.7 10 — 35
¢=1.0 — 45
3. Richtmyer (Second-Order) o =07 11 70.5 10
(Basic Scheme) o =10 47.06 10
Richtmyer (Second-Order) o= 10 x =10 41.2 15
(with Shuman Switch) x = 2.0 41.2 20
4. MacCormack (Second-Order) unstable
5. Rusanov (third-Order) w = 2/24 o= 0.7 12 8.82 10
Rusanov (third-Order)
(with Shuman Switch) w = 2/24 x =10 12 8.82 15
=07 x = 2.0 12 8.82 20

Smearing is defined in terms of the number of mesh widths over which a discontinuity spreads.
In case of smooth profiles all points where the numerical value differs from the theoretical value
by more than 1 per-cent are considered to add to the width of discontinuity. Wherever an overshoot
or an undershoot is present, the point at which the value is maximum or minimum is considered
as the head or the tail respectively of the discontinuity.

Similar considerations hold good when fixing the number of meshes from the wall to the point
at which the density value is equal to the theoretical value.

Overshoot is expressed as a percentage of maximum pressure (density in the case of contact
discontinuity).

Undershoot is expressed as a percentage of minimum pressure (density in the case of contact
discontinuity). Integrated error = (1/8) jﬁ | Po — Prp|dx where P, == the actual pressure,
Py, = theoretical pressure. § = width of the discontinuity. For purposes of numerical inte-
gration all the points in the region were considered since the contribution to the error from points
outside the width 9, is negligible. The integrated error for the different schemes is expressed as a
ratio of the error to that for the first order Rusanov Scheme. Time of computation for the different
schemes is also expressed as a ratio of time required for 20 time steps to that required by the
first-order Rusanov scheme.

tive picture of the capability of different schemes in describing the main features
of the test problems. Quantitative results like overshoot, undershoot, shock
smearing, accuracy, and time of computation have been collected in Table III
for propagating shock, reflected shock, and contact discontinuity. Reference to
Table III, which also includes values of the integrated error, indicates that the

581/20/2-3
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integrated error across a discontinuity is dependent on the value of o, the flow
property and the problem considered. The ranking of schemes based on the
propagating shock (considered by Taylor ef al. [3]) and that based on the reflected
shock (present calculations) are not the same. Similarly the ranking based on
density (Taylor et al. [3]) and that based on pressure (present calculations) are
not the same. Consequently the conclusions based entirely on the values of
integrated errors for various schemes could be misleading. However, some indica-
tion can be obtained as regards the merits in employing the first-order Van Leer
scheme and the demerits in employing the Shuman Switch.

It also appears that the ranking of schemes based on any particular aspect
would again be misleading. There does not appear to be any other particular
criterion which could be universal. Hence, all aspects of scheme behavior are
considered when the comparisons are made.

(i) Rusanov and Van Leer Schemes

Figures 1 and 4 indicate that the Van Leer scheme yields sharper shocks (both
the propagating and the reflected) compared to the first order Rusanov scheme
for the same set of parameters. An overshoot results for values of o greater than
0.7. The propagating shock profile is acceptable upto ¢ = 0.8. In the case of the
reflected shock small oscillations exist. The profile is somewhat more smeared
at the tail. The prediction of density at the wall is also improved (Table IIIb).

Pa/Py
n

(b) w=10

Fic. 1. Pressure profiles for the propagating shock as given by the first-order schemes:
(a) the Rusanov scheme, (b) the VanLeer scheme.
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10F
o«
o
st o:10 05 |X=10 |X=15 |X=20
1 = r=—10Meshwidth
PR N SO N S B
(a) (b)
o= 10
12r
10
el
o\': =1.0 X=20 m=10 |m=20 m«=1.0 Im=2.0
-
1 1 1 . 1 H 1 1 L 1 1 —
(c) (d) (e)
6=10,m=20 ¢=10,X=10 0=10,X=20

FiG. 2. Pressure profiles for the propagating shock as given by the second-order Richtmyer
scheme: (a) basic form, (b) with the Shuman Switch, (c) with the Shuman Switch in quadratic
form, (d) with the Shuman Switch in exponential form and xy = 1.0, (¢) with the Shuman Switch

in exponential form and x = 2.0.

12
o

. g; X=0 Xs10 {X=20
S

P2 1Py

(a) (b) .
—  j=—10 Meshwidth

(@) =07, (b) w=20/24,9=0.7.
Fic. 3. Pressure profiles for the propagating shock as given by the third-order Rusanov
scheme: (a) Basic form, (b) with Shuman Switch.

Regarding the shock tube flow it is found that the shock is rendered sharper but
with an overshoot. The contact discontinuity behaviour is slightly improved.

(ii) MacCormack and Richtmyer Schemes

Studies by Taylor et al. [3] do not give explicit information about the
MacCormack scheme. Also the form of the MacCormack scheme considered is
different from that considered here. The present results show that the MacCormack
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Py /P,

20
10 X = r~10Mesh width

(a) w=10

FiG. 4. Pressure profiles for the reflected shock as given by the first-order schemes: (a) the
Rusanov scheme, (b) the Van Leer scheme.

scheme behaves better than the Richtmyer scheme regarding all the aspects of the
propagating and the reflected shocks. But the major disadvantage is that the
MacCormack scheme is unstable for the shock tube problem. Regarding the
calculation of the standing shock the Richtmyer scheme was found to be unstable.
The profile obtained by the MacCormack scheme, exhibiting a mild instability,
was not acceptable.

(ili) The Effects of the Shuman Switch

Figures 2, 3, 5, 6, and 7 show that the Shuman Switch is quite effective in
eliminating the oscillations, overshoots and undershoots. As is expected this is
obtained at the cost of smearing of the profiles. In general, a value of y = 1.0
for both the propagating and the reflected shocks seems adequate. Some oscilla-
tions do remain for the reflected shock. Employing the value of ¥ = 2.0 produces
a cascadelike structure making the profile unacceptable. To overcome excess
smearing, improved forms, namely, a value of m = 2.0 and the exponential form
with m = 1, 2 were tried (see Table II). The effect of these improvements is strongly
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50[» {a—

X=1.0
With Shuman
switch

X=0
301 iBasic form

Pa /Py

TN R SN Y U T N N
(a) o =1.0 (b) o==0.7

o=’
1 —  h-10 Mesh width
o1 o1

FiG. 5. Pressure profiles for the reflected shock as given by the second-order Richtmyer
scheme with and without the Shuman Switch.

=
P

3

Py

T

o

i X =
& o
Basic .
form with Shuman switch

mr—/
FiG. 6. Pressure profiles for the reflected shock as given by the second-order MacCormack
scheme with and without the Shuman Switch.

- =10 Mesh width
L 1 . L 1 1 1

felt for y = 2.0 where the profile is rendered sharper especially at the upstream
of the propagating shock. The exponential form with y = 2.0, m = 2.0 again
gives rise to a cascadelike structure for both the propagating and the reflected
shocks. The above conclusions are true even for the shock in the shock tube flow
(Figs. 11-14). The weak shock here is smeared to about 10 mesh widths. The
oscillations near the contact discontinuity are not eliminated. An elimination of
these is possible only with certain disadvantages like smearing and presence of a
large undershoot (Fig. 12). Figure 13 shows that the various improved forms of
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Pat=p ]
"Bl
601~ __r ’
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o) 1<-1OMeshwudth
ol I il uiidvib el

Fic. 7. Pressure profiles for the reflected shock as given by the third-order Rusanov scheme:
(a) basic form o = 0.7, (b) with the Shuman Switch in basic form, w = 2/24, o = 0.7, (c) with
the Shuman Switch in exponential form, « = 2/24, o = 0.7.

SEal
e
o i
“-11.0L NPz I
r A all
< b : N
£ 108/ / i
o i
\
E |
9 10.61 {
3 1

10.4
10.2- wall position \ E wall position
L (@) o =07 ) (8)o=07
0or b ————++-10Mesh width
‘; les|

Fic. 8. Density profiles near the wall (enlarged) as given by the various schemes for the shock

reflection problem: (a) —~--—~—- first-order Rusanov scheme, v = 10, —— -+ ——- -
first-order Van Leer scheme, w = 1.0, ———————— second-order Richtmyer scheme, ————
second-order MacCormack scheme, —— third-order Rusanov scheme; (b) ——— Richtmyer
scheme without the Shuman Switch. —— Richtmyer scheme with the Shuman Switch, x = 1.0,

——-——- Richtmyer scheme with the Shuman Switch, ¥ = 2.0.

the switch do not appear to offer any significant improvement in the behavior
of schemes. The Shuman Switch was employed in the Richtmyer scheme for the
example of the standing shock. The instability was overcome and stable results
were obtained for y = 1.0 and y = 2.0. Large smearing even for y = 1.0, is
evident from Fig. 9.
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08
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@

Pressure
o
>

0.2

0 L 1
20 30 40 50 €0
Distance x
FiG. 9. Pressure profiles for the standing shock as given by the Richtmyer scheme with the
Shuman Switch (o = 0.7).
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FiG. 10. Density and pressure profiles for the shock tube flow as given by the first-order
schemes. o = 0.7. —— the Rusanov scheme, — — - the Van Leer scheme.

(iv) Boundary Errors for Different Schemes

It is noticed that (Fig. 8) with the exception of the third-order scheme and the
MacCormack scheme, all other schemes considered predict a lower value of
density at the wall. The MacCormack scheme predicts a higher value. The manner
in which the density profile joins the theoretical value behind the reflected shock
is seen to be a function of the order of the scheme. The prediction of a lower value
of density at the wall could be accounted for by following the arguments advanced
by Fox [15]. When the shock interacts with the wall and the reflected shock is
formed, there is an over production of entropy and subsequent heating at the wall,
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Fic. 12. Density profile as given by the Richtmyer scheme with the Shuman Switch (x = 2.0)
oscillations near contact discontinuity eliminated.

This results in the lowering of the density value and thus large error in density
value accumulates at the wall. The first-order schemes tend to be diffusive even
in presence of a zero-velocity field (which exists between the wall and the reflected
shock) and hence the above error gets diffused over a number of mesh widths in
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Switch, —+—— switch in the basic form, m = 1.0 — - — - — switch with m = 2.0, — — ~—
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FiG. 14. Density and pressure profiles for the shock tube flow as given by the third-order
Rusanov scheme, w = 2.0/2.4, 0 = 0.7, —— basic scheme, ——— with the Shuman Switch,
x = 1.0, — — — — with the Shuman Switch, x = 2.0.

the course of time. Similar reasoning holds good when the Shuman Switch is
employed with the higher order schemes, where the order of accuracy is lowered
to one wherever the switch is “ON.” By the suitable choice of a shock-sensing
property it is possible to avoid the artificial smearing at the wall. But in this case
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one has to accept the artificial oscillatory profile given by the basic second-order
scheme.

(v) Behavior of Schemes for the Standing Shock

The first- and the third-order methods, as expected, gave stable results for the
standing shock problem. The smearing, overshoot and other features of the
profiles were similar to those observed for the example of the propagating shock.
The Richtmyer scheme was found to be unstable. The MacCormack scheme
exhibited a mild instability allowing the computations to proceed. But the profile
was unacceptable. This nonlinear instability can be overcome by employing the
Shuman Switch. This has been demonstrated for the Richtmyer scheme in Fig. 9.
Further discussion regarding this may be found in Section iii.

CONCLUDING REMARKS

With reference to the questions which were posed earlier the following conclu-
sions can be drawn.

1. Compared to the Rusanov scheme, the Van Leer scheme does give
sharper shock profiles which also are smooth for values of ¢ around 0.7. The
improvement regarding other discontinuities is marginal.

2. The MacCormack scheme is seen to behave better than the Richtmyer
scheme in all aspects of shock handling.

3. The Shuman Switch is effective in overcoming oscillations and instabilities
but considerably smears the shock and the weak shocks are smeared to an intoler-
able extent.

4. The first- and the second-order methods both give rise to artificial heating
at the wall and hence artificial density profile near the wall in the case of shock-
wave reflection.

5. The nonlinear instability associated with the standing shock can be
overcome by the use of the Shuman Switch provided one can accept the largely
smeared shock profile.

When we consider the results of the present work together with those of earlier
investigations (Table I), it is observed that no single scheme performs best in
every aspect considered. The recommendation by Taylor et al. [3] of Godunov’s
scheme [14] (not tested here) is, of course, unaffected. The Godunov scheme,
however, requires considerable programming effort and computer time, while
the simplified version given by Van Leer [13] again requires extra viscosity terms
to overcome nonlinear instabilities. For those who want a first-order scheme as
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simple as Rusanov’s, but with a somewhat higher resolving power, the Van Leer
scheme with quadratic diffusion coefficients may be an alternate choice. The
reduction in diffusion, however, is paid with an increase in overshoot.
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